Positional Information within the Mu Transposase Tetramer: Catalytic Contributions of Individual Monomers
نویسندگان
چکیده
The strand cleavage and strand transfer reactions of Mu DNA transposition require structural/catalytic contributions from separate polypeptide domains of individual transposase (MuA) monomers within the functional MuA tetramer. Based on catalytic complementation between two inactive MuA variants, we have derived certain rules by which the physical location of a MuA monomer within the transposition complex specifies its role in DNA breakage and transfer. During strand transfer, MuA monomers contributing domain II to the reaction occupy R1 (the subsite proximal to the strand-transferred nucleotide), while those contributing domain IIIalpha occupy R2. The positions of the monomers contributing these two domains appear to be reversed during DNA cleavage.
منابع مشابه
Complete transposition requires four active monomers in the mu transposase tetramer.
A tetramer of Mu transposase (MuA) cleaves and joins multiple DNA strands to promote transposition. Derivatives of MuA altered at two acidic residues that are conserved among transposases and retroviral integrases form tetramers but are defective in both cleavage and joining. These mutant proteins were used to analyze the contribution of individual monomers to the activity of the tetramer. The ...
متن کاملAssembly of phage Mu transpososomes: Cooperative transitions assisted by protein and DNA scaffolds
Transposition of phage Mu takes place within higher order protein-DNA complexes called transpososomes. These complexes contain the two Mu genome ends synapsed by a tetramer of Mu transposase (MuA). Transpososome assembly is tightly controlled by multiple protein and DNA sequence cofactors. We find that assembly can occur through two distinct pathways. One previously described pathway depends on...
متن کاملThe same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to car...
متن کاملCriss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition.
A bipartite enhancer sequence (composed of the O1 and O2 operator sites) is essential for assembly of the functional tetramer of phage Mu transposase (MuA) on supercoiled DNA substrates. A three-site interaction (LER) between the left (L) and right (R) ends of Mu (att sites) and the enhancer (E) precedes tetramer assembly. We have dissected the role of the enhancer in tetramer assembly by using...
متن کاملMu Transpositional Recombination: Donor DNA Cleavage and Strand Transfer in trans by the Mu Transposase
Central to the Mu transpositional recombination are the two chemical steps; donor DNA cleavage and strand transfer. These reactions occur within the Mu transpososome that contains two Mu DNA end segments bound to a tetramer of MuA, the transposase. To investigate which MuA monomer catalyzes which chemical reaction, we made transpososomes containing wild-type and active site mutant MuA. By pre-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 85 شماره
صفحات -
تاریخ انتشار 1996